3.9.65 \(\int \frac {(a+b x+c x^2)^{3/2}}{d+e x} \, dx\) [865]

Optimal. Leaf size=252 \[ \frac {\left (8 c^2 d^2+b^2 e^2-2 c e (5 b d-4 a e)-2 c e (2 c d-b e) x\right ) \sqrt {a+b x+c x^2}}{8 c e^3}+\frac {\left (a+b x+c x^2\right )^{3/2}}{3 e}-\frac {(2 c d-b e) \left (8 c^2 d^2-b^2 e^2-4 c e (2 b d-3 a e)\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{16 c^{3/2} e^4}+\frac {\left (c d^2-b d e+a e^2\right )^{3/2} \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{e^4} \]

[Out]

1/3*(c*x^2+b*x+a)^(3/2)/e-1/16*(-b*e+2*c*d)*(8*c^2*d^2-b^2*e^2-4*c*e*(-3*a*e+2*b*d))*arctanh(1/2*(2*c*x+b)/c^(
1/2)/(c*x^2+b*x+a)^(1/2))/c^(3/2)/e^4+(a*e^2-b*d*e+c*d^2)^(3/2)*arctanh(1/2*(b*d-2*a*e+(-b*e+2*c*d)*x)/(a*e^2-
b*d*e+c*d^2)^(1/2)/(c*x^2+b*x+a)^(1/2))/e^4+1/8*(8*c^2*d^2+b^2*e^2-2*c*e*(-4*a*e+5*b*d)-2*c*e*(-b*e+2*c*d)*x)*
(c*x^2+b*x+a)^(1/2)/c/e^3

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 252, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {748, 828, 857, 635, 212, 738} \begin {gather*} \frac {\sqrt {a+b x+c x^2} \left (-2 c e (5 b d-4 a e)+b^2 e^2-2 c e x (2 c d-b e)+8 c^2 d^2\right )}{8 c e^3}-\frac {(2 c d-b e) \left (-4 c e (2 b d-3 a e)-b^2 e^2+8 c^2 d^2\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{16 c^{3/2} e^4}+\frac {\left (a e^2-b d e+c d^2\right )^{3/2} \tanh ^{-1}\left (\frac {-2 a e+x (2 c d-b e)+b d}{2 \sqrt {a+b x+c x^2} \sqrt {a e^2-b d e+c d^2}}\right )}{e^4}+\frac {\left (a+b x+c x^2\right )^{3/2}}{3 e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x + c*x^2)^(3/2)/(d + e*x),x]

[Out]

((8*c^2*d^2 + b^2*e^2 - 2*c*e*(5*b*d - 4*a*e) - 2*c*e*(2*c*d - b*e)*x)*Sqrt[a + b*x + c*x^2])/(8*c*e^3) + (a +
 b*x + c*x^2)^(3/2)/(3*e) - ((2*c*d - b*e)*(8*c^2*d^2 - b^2*e^2 - 4*c*e*(2*b*d - 3*a*e))*ArcTanh[(b + 2*c*x)/(
2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(16*c^(3/2)*e^4) + ((c*d^2 - b*d*e + a*e^2)^(3/2)*ArcTanh[(b*d - 2*a*e + (2
*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x + c*x^2])])/e^4

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 748

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 828

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*((a + b*x + c*x^
2)^p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2))), x] - Dist[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a
 + b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p -
 c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b*
d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0
] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])
) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {\left (a+b x+c x^2\right )^{3/2}}{d+e x} \, dx &=\frac {\left (a+b x+c x^2\right )^{3/2}}{3 e}-\frac {\int \frac {(b d-2 a e+(2 c d-b e) x) \sqrt {a+b x+c x^2}}{d+e x} \, dx}{2 e}\\ &=\frac {\left (8 c^2 d^2+b^2 e^2-2 c e (5 b d-4 a e)-2 c e (2 c d-b e) x\right ) \sqrt {a+b x+c x^2}}{8 c e^3}+\frac {\left (a+b x+c x^2\right )^{3/2}}{3 e}+\frac {\int \frac {\frac {1}{2} \left (4 c e (b d-2 a e)^2-d (2 c d-b e) \left (4 b c d-b^2 e-4 a c e\right )\right )-\frac {1}{2} (2 c d-b e) \left (8 c^2 d^2-b^2 e^2-4 c e (2 b d-3 a e)\right ) x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx}{8 c e^3}\\ &=\frac {\left (8 c^2 d^2+b^2 e^2-2 c e (5 b d-4 a e)-2 c e (2 c d-b e) x\right ) \sqrt {a+b x+c x^2}}{8 c e^3}+\frac {\left (a+b x+c x^2\right )^{3/2}}{3 e}+\frac {\left (c d^2-b d e+a e^2\right )^2 \int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx}{e^4}-\frac {\left ((2 c d-b e) \left (8 c^2 d^2-b^2 e^2-4 c e (2 b d-3 a e)\right )\right ) \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{16 c e^4}\\ &=\frac {\left (8 c^2 d^2+b^2 e^2-2 c e (5 b d-4 a e)-2 c e (2 c d-b e) x\right ) \sqrt {a+b x+c x^2}}{8 c e^3}+\frac {\left (a+b x+c x^2\right )^{3/2}}{3 e}-\frac {\left (2 \left (c d^2-b d e+a e^2\right )^2\right ) \text {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x}{\sqrt {a+b x+c x^2}}\right )}{e^4}-\frac {\left ((2 c d-b e) \left (8 c^2 d^2-b^2 e^2-4 c e (2 b d-3 a e)\right )\right ) \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{8 c e^4}\\ &=\frac {\left (8 c^2 d^2+b^2 e^2-2 c e (5 b d-4 a e)-2 c e (2 c d-b e) x\right ) \sqrt {a+b x+c x^2}}{8 c e^3}+\frac {\left (a+b x+c x^2\right )^{3/2}}{3 e}-\frac {(2 c d-b e) \left (8 c^2 d^2-b^2 e^2-4 c e (2 b d-3 a e)\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{16 c^{3/2} e^4}+\frac {\left (c d^2-b d e+a e^2\right )^{3/2} \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{e^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.10, size = 243, normalized size = 0.96 \begin {gather*} \frac {\frac {2 e \sqrt {a+x (b+c x)} \left (3 b^2 e^2+2 c e (-15 b d+16 a e+7 b e x)+4 c^2 \left (6 d^2-3 d e x+2 e^2 x^2\right )\right )}{c}+96 \sqrt {-c d^2+b d e-a e^2} \left (c d^2+e (-b d+a e)\right ) \tan ^{-1}\left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+x (b+c x)}}{\sqrt {-c d^2+e (b d-a e)}}\right )+\frac {3 (2 c d-b e) \left (8 c^2 d^2-b^2 e^2+4 c e (-2 b d+3 a e)\right ) \log \left (c \left (b+2 c x-2 \sqrt {c} \sqrt {a+x (b+c x)}\right )\right )}{c^{3/2}}}{48 e^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x + c*x^2)^(3/2)/(d + e*x),x]

[Out]

((2*e*Sqrt[a + x*(b + c*x)]*(3*b^2*e^2 + 2*c*e*(-15*b*d + 16*a*e + 7*b*e*x) + 4*c^2*(6*d^2 - 3*d*e*x + 2*e^2*x
^2)))/c + 96*Sqrt[-(c*d^2) + b*d*e - a*e^2]*(c*d^2 + e*(-(b*d) + a*e))*ArcTan[(Sqrt[c]*(d + e*x) - e*Sqrt[a +
x*(b + c*x)])/Sqrt[-(c*d^2) + e*(b*d - a*e)]] + (3*(2*c*d - b*e)*(8*c^2*d^2 - b^2*e^2 + 4*c*e*(-2*b*d + 3*a*e)
)*Log[c*(b + 2*c*x - 2*Sqrt[c]*Sqrt[a + x*(b + c*x)])])/c^(3/2))/(48*e^4)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(624\) vs. \(2(226)=452\).
time = 0.13, size = 625, normalized size = 2.48 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(3/2)/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

1/e*(1/3*(c*(x+d/e)^2+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(3/2)+1/2*(b*e-2*c*d)/e*(1/4*(2*c*(x+d/e)
+(b*e-2*c*d)/e)/c*(c*(x+d/e)^2+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)+1/8*(4*c*(a*e^2-b*d*e+c*d^
2)/e^2-(b*e-2*c*d)^2/e^2)/c^(3/2)*ln((1/2*(b*e-2*c*d)/e+c*(x+d/e))/c^(1/2)+(c*(x+d/e)^2+(b*e-2*c*d)/e*(x+d/e)+
(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)))+(a*e^2-b*d*e+c*d^2)/e^2*((c*(x+d/e)^2+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^
2)/e^2)^(1/2)+1/2*(b*e-2*c*d)/e*ln((1/2*(b*e-2*c*d)/e+c*(x+d/e))/c^(1/2)+(c*(x+d/e)^2+(b*e-2*c*d)/e*(x+d/e)+(a
*e^2-b*d*e+c*d^2)/e^2)^(1/2))/c^(1/2)-(a*e^2-b*d*e+c*d^2)/e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d
*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*(c*(x+d/e)^2+(b*e-2*c*d)/e*(x+d/e)+(a*e^
2-b*d*e+c*d^2)/e^2)^(1/2))/(x+d/e))))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(c*d^2-%e*b*d+%e^2*a>0)', see `
assume?` for

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b x + c x^{2}\right )^{\frac {3}{2}}}{d + e x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(3/2)/(e*x+d),x)

[Out]

Integral((a + b*x + c*x**2)**(3/2)/(d + e*x), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (c\,x^2+b\,x+a\right )}^{3/2}}{d+e\,x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x + c*x^2)^(3/2)/(d + e*x),x)

[Out]

int((a + b*x + c*x^2)^(3/2)/(d + e*x), x)

________________________________________________________________________________________